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bstract

he focus of this review is to summarize the understanding of why the coarsening of grains and pores accompanies the densification of a powder
ompact. The review will initiate with a summary of the thermodynamic studies of simple particle arrays, which suggests that the growth of necks
etween the initial touching particles stop before the compact is dense. Results of analytical and computer studies concerning how grain growth
ccurs in partially dense powder compacts will be reviewed to show that grain coarsening will reinitiate the neck growth process responsible for

urther shrinkage. Experimental results will then be reviewed and related to the analytical studies. It will be shown that isolated pores connected
o the largest number of grain boundaries, namely, avenues for rapid mass transport, will disappear first. Finally, the lack of pore periodicity will
onstrain the shrinkage of one region relative to another.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

To understand the intent of this review, the reader must
ull out their Introduction to Ceramics1 and turn to pages 482
nd 483 to study the consecutive micrographs, supplied by C.
reskovich and K. Lay, showing the microstructural devel-
pment of an alumina oxide powder compact as it densifies.

quick glance should tell even the causal student that grain
rowth is concurrent with densification. The four micrographs
n these two pages clearly show the particle size of the ini-
ial powder compact, and the size of the grains for partially
ense compacts after heat treatments at 1700 ◦C for periods of
, 2.5 and 6 min. It is obvious that an enormous amount of grain
rowth occurs between consecutive micrographs. Recognizing
hat when two identical spheres combine to make one with a
adius only 26% ( 3

√
2 = 1.26) larger that either of the two smaller

pheres, one must conclude that the more than half the parti-
les have disappeared after the powder compact was heated at
700 ◦C for only 1 min, a point where the compact is still very
orous.

Concurrent to the enormous growth of grains during den-

ification, one observes a comparable growth of pores. If the
arge amount of grain growth does not bother the serious student
xpecting to understand densification, the concurrent growth of

∗ Tel.: +1 805 893 8248; fax: +1 805 893 8486.
E-mail address: flange@engineering.ucsb.edu.
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he pores should trigger a complete lack of comprehension. That
s, although the student cannot read about a comprehensive link
etween grain growth and densification in the chapter concerned
ith densification, at least the text book explains grain growth in

erms of either grain boundary motion or coarsening (the mass
ransfer between surface of grains). On the other hand, since the
ook only implies that pores disappear during densification, it
hould be incomprehensible to the serious student to see them
row as clearly illustrated in the sequential micrographs supplied
y Greskovich and Lay.

The objective here is to review the literature to explain why
rain growth is a critical phenomenon to achieve densification,
nd why pore growth is a consequence to the constraint to den-
ification produced by a non-periodic distribution of pores. It
ill be see that the grain growth of interest here is caused
y coarsening, namely, a phenomenon associated with either
urface diffusion or evaporation/condensation, and generally
ot associated with densification. Likewise, it will be shown
hat pore growth is also a consequence of coarsening, lead-
ng to a decrease in surface area, and thus a decrease in free
nergy.

The review starts with a thermodynamics of neck growth for
periodic array of identical, spherical, single crystal particles to
how that neck growth will stop once the energy required to form
he grain boundary between the particles exceeds the reduction
n free energy due to a decrease in the particle’s surface area.
he second subject concerns the sintering of a smaller particles

mailto:flange@engineering.ucsb.edu
dx.doi.org/10.1016/j.jeurceramsoc.2007.12.016
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eriodically placed between larger particles. Here it is shown
hat conditions exist where, after neck growth stops between
ll particles, the transfer of mass from the smaller particles to
he larger particles will eventually cause the larger particles to
ouch one another to reinitiate neck growth, and thus shrink-
ge. Third, experimental evidence will be reviewed that confirms
he first two subjects. Forth, experimental observations will be
eviewed concerning isolated pores that are coordinated by either
small or large number of grains. These results show that it is
ot the local surface curvature that controls pore closure, but the
umber of grain boundaries (fast diffusion paths) that intercept
he pore. Lastly, it will be shown that if the isolated pores are
ot periodic, pore growth will occur via a de-sintering process
ue to the constraint of shrinkage by one part of the body on
thers.

. Thermodynamics of neck growth

To estimate the free energy change during the growth of necks
etween touching, identical single crystal spheres, Kellett and
ange2 assumed that the morphological change could be sim-
ly described by a linear array of truncated spheres as shown in
ig. 1a. They assumed that only two parameters were required to
evelop a free energy function, namely, the initial particle radius,
i, and an angle, φ, that describes the relation between the two
angents at the spherical surfaces that have a common vertex at

he grain boundary shown above Fig. 1a. For a given array, ri is
xed, φ is varied between 0 and π, and the volume of the cylin-
er or sphere remains constant, thus describing the radius of
he truncated sphere as a function of φ. Although this model

e
N
c
c

ig. 1. Schematic for a linear array of cylinders (or spheres) showing truncated forms
ne truncated cylinder (or sphere) as a function of the contact angle. Lowest free ene
s a function of the pore radius normalized by the initial sphere size for ring arrays co
amic Society 28 (2008) 1509–1516

eglects the negative curvature of the surface located in the
eck region during neck growth analytically described by Pross
nd Exner,3 it does produce the exact equilibrium configuration
hen φ = φe, the dihedral angle, as also reported by Cannon and
arter.4

The free energy function is give by

= Asγs + Abγb, (1)

here As is the surface area of the truncated cylinder or sphere,
b is the grain boundary area, γs is the surface energy/unit
rea, and γb is the grain boundary energy/unit area. The surface
nergies are related through Young’s relation,

γb

γs
= 2 cos

φe

2
, (2)

here φe is the equilibrium dihedral angle defined by the ratio of
he two interfacial energies. As and Ab are simple trigonometric
unctions of ri, φ, γs and φe.2

Fig. 1a illustrates three free energy functions described by
q. (1), normalized by the initial energy of a cylinder of unit

ength (E0 = 4πr2γs) for three different values of the dihedral
ngle. As shown, with increasing values of φ, the free energy
ecreases to a minimum when φ = φe where the formation of
neck between the two particles stops. This minimum occurs

ecause any further decrease in free energy due to a decrease
n the external surface energy is less than the increase in free

nergy due to the increasing surface area of the grain boundary.
amely, the configuration at φ = φe is a metastable equilibrium

onfiguration for neighboring particles in the linear array. This
onfiguration is metastable because mass can still be transferred

as a function of the contact angle φ (0 < φe < π). (a) Normalized free energy for
rgy occurs where φ = φe. (b) Normalized free energy of a ring array of spheres
ntaining n number of spheres coordinating the pore.
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etween the particles to further reduce the free energy, a point
hat will be discussed in the next section.

The same model can be used to estimate the free energy
hange for circular arrays of cylinders or spheres and polyhedra
rrays of spheres.2 As shown in the insert of Fig. 1b, one addi-
ional thermodynamic parameter is needed for the free energy
unction, namely the number of particles, n, that surround the
ore. For these arrays, it can be shown that the radius of the pore,
p, is a function of ri, φ, and n, e.g., Rp decreases with increasing
. Fig. 1b illustrates the normalized change in free energy for a
ircular array with different number of coordinating cylinders.
s shown, when n > nc, where nc = 2π/(π − φe), pores shrink to

heir metastable equilibrium configuration, when φ = φe, but do
ot disappear. More recently, Wakai et al.5 reached the same
onclusions via a numerical method.

The thermodynamic analysis of neck growth by Kellett and
ange2 lead to two major conclusions. First, for conditions
here the dihedral angle is <π, the growth of necks between the

nitially touching particles in a powder compact will stop after
ome period of mass transport. Second, because real powder
ompacts are formed of connective, particle polyhedra, Kellett
nd Lange concluded that not all pores would disappear during
he initial period of neck growth. Much earlier, Hoge and Pask6

eached this same conclusion by determining the equilibrium
onfiguration achieved by identical spheres that formed a peri-
dic, three-dimensional (e.g., simple cubic) array. Namely, they
howed that the periodic pores (e.g., those coordinated by 8 par-
icles within the simple cubic arrangement) would not disappear,
fter the particles formed necks, for conditions where the dihe-
ral angle was less than a critical angle. Similar to Lange and
ellett, Hoge and Pask reached this conclusion with the assump-

ion that mass distribution between the identical particles would
ot occur.

To test the validity of the above conclusions, namely that
eck growth between initially touching particles would stop
nd many pores defined by the initial touching particles would
ot disappear, Slamovich and Lange7 investigated the densifi-
ation behavior of particles synthesized as either single crystal
r polycrystalline ZrO2 spheres via the electrostatic atom-
zation of an aqueous Zr- and Y-acetate solution (0, 3 and
0 mole% Y2O3). The ZrO2 spheres (1–2 �m diameter) con-
aining either 0 or 10 mole% Y2O3 spheres quickly converted,
ia grain growth, into single crystals after heating to 1350 ◦C,
hereas, as expected,8,9 those containing 3 mole% Y2O3

emained polycrystalline after prolonged heating (>64 h) at
400 ◦C.

Figs. 2 and 3 summarize the results of this study. As shown in
ig. 2a, when compacts of the spherical single crystal particles
re heat treated at 1400 ◦C for periods up to 64 h, neck growth
s observed for short heating periods between 1300 and 1400 ◦C
A in Fig. 2a), but necks stop growing after very short periods
t 1400 ◦C. Fig. 2a is part of a series of micrographs taken at
he same surface location after the specimen was heated, then

ooled for SEM observations, and then reheated and cooled for
bservations, for many cyclic heating periods. It can be seen that
ost of the particles retain their identity from one micrograph to

he next, whereas others (usually smaller particles) are consumed

t
d
t
m

amic Society 28 (2008) 1509–1516 1511

y neighboring particles, via coarsening. That is, once necks
uickly form between touching particles, neck growth stops and
oarsening becomes the dominate phenomenon associated with
orphological changes. Identical observations are observed for

oth single crystal powders, namely, ZrO2 containing either 0
r 10 mole% Y2O3.

Fig. 2b illustrates the same heating sequence for the spherical,
olycrystalline particles (see insert). Unlike the single crystal
articles, after ≈10 h at 1400 ◦C, the polycrystalline particles
egin to loose their identity, and are no longer recognized after
xtended periods. Although grain growth was observed in the
ense polycrystalline particles, the grains were always much
maller than the initial particles themselves. Likewise, when
solated pairs of particles are heat treated in the same way, it
as also observed that neck growth stops for the single crys-

al particles, whereas neck growth between the polycrystalline
articles does not stop until the two particles become one larger
olycrystalline sphere.7

Fig. 3 illustrates the density of powder compacts made from
he three powders, heat treated for different periods from room
emperature to 1400 ◦C and then at 1400 ◦C for extended periods.
t can be seen that powder compacts formed with either single
rystal powder exhibit most of their shrinkage (increasing their
elative density from ≈0.4 to ≈0.63) during the period of neck
rowth (between 1300 and 1400 ◦C), whereas little densification
ontinues for extended periods at 1400 ◦C. That is, shrinkage is
oncurrent with neck growth, i.e., via grain boundary diffusion.
fter neck growth ceases, the rate of shrinkage is much less.
As shown in Fig. 3, the compacts formed with the polycrys-

alline particles exhibit a much larger change in density (from
0.4 to ≈0.9) relative to those formed with the single crys-

al particles. For this case, the densification rate decreases at
400 ◦C as the pores become isolated for relative densities >0.85.
icrographs of polished and etched bodies formed with the

olycrystalline particles and heat treated at 1400 ◦C for 64 h,
nly revealed isolated pores. Whereas, micrographs of bodies
ormed with the single crystal particles also heated for the same
eriod revealed an open, sintered particle network, penetrated
y a co-mingled pore phase. Namely, the single crystal parti-
les were readily identified, and appear similar to that shown in
ottom micrograph of Fig. 2a.

The results for the experimental studies for single crystal
articles clearly agree with the thermodynamic analysis, namely,
he neck growth between single crystal particles will stop when
he particles form a metastable equilibrium configuration. It is
lso clear that further densification must involve some other
henomenon, which is very sluggish at 1400 ◦C. As discussed
elow, it is shown that coarsening, i.e., the disappearance of
maller grains and the growth of larger grains appear to be the
henomenon that would continue densification.

After observing that neck formation between polycrystalline
articles does not stop, Slamovich and Lange,7 recognized that
o new grain boundary forms between the polycrystalline par-

icles. In fact, it was obvious that grain boundaries actually
isappear during neck formation, and thus, unlike single crys-
al particles, the polycrystalline particles will never achieve a

etastable equilibrium configuration.
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ig. 2. (a) Identical areas for single crystal ZO2 (10 m/o Y2O3) compact heated
pheres do not lose their identity. (b) Identical areas for polycrystalline ZO2 (3 m
C). Note: polycrystalline spheres do lose their identity.

. Coarsening of grains during densification

It is well know that the transport of mass from the surface
f one particle (or grain) to another via either surface diffu-
ion or evaporation/condensation will not cause the densification
f a powder compact.10 But, as shown in this section, surface
iffusion will cause smaller grains sandwiched between larger
rains to disappear to reinitiate the neck growth process and thus,
hrinkage between the larger particles. Thus, the cyclic neck
rowth (sintering), coarsening, and reinitiated neck growth was
ypnotized11 to allow densification to proceed after neck growth
etween the initially touching particles ceased.

Fig. 4a shows the sequential mass transport between a small
nd large particle for a given dihedral angle, φe. As reviewed
bove, neck growth will initially dominate any mass transport
henomenon because of the net negative curvature at the neck
egion where the particles join together. Here, as above, it will be

ssumed that neck growth is dominated by grain boundary diffu-
ion, namely, mass in each of the two adjoining particles diffuses
long the grain boundary to the surface to formed the neck, to
educe the distance between their mass centers, and thus produce

i
a
a
a

00 ◦C–10 h (A), 1400 ◦C–12 h (B), and 1400 ◦C–40 h (C). Note: single crystal
O3) compact heated to 1300 ◦C–10 h (A), 1400 ◦C–12 h (B), and 1400 ◦C–40 h

hrinkage. When the size ratio of the adjacent particles is less
han a critical value, neck growth will stop when the equilibrium
ondition is achieved as discussed above for identical particles.

Although neck growth terminates, a driving force for mass
ransport still exists due to the differential size of the two grains.
his driving force results in mass transport between the grains,
y surface diffusion (or evaporation–condensation), causing the
maller grain to ‘donate’ its mass to the larger grain, reducing the
urface to volume ratio, and thus, the free energy of the system.
he change in free energy for coarsening is related to the inverse

adii of the two grains, and is thus much smaller relative to the
riving free energy for neck growth due to the negative curvature
n this region. In addition, the mass transport path is much larger
elative to the grain boundary path. Thus, coarsening is expected
o be much slower and should require higher temperatures.

Once neck growth ceases, it is obvious that the two sintered
rains shown in Fig. 4a could further reduce their free energy

f the grain boundary were to move through the smaller grain
nd disappear. This could happen, but as pointed out by Lange
nd Kellett,11 the grain boundary would have to first increase its
rea, namely, there exist an energy barrier for the movement of
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Fig. 3. Relative density vs. time at 1400 ◦C for three powder compacts composed
of spherical, single crystal ZO2 particles (0 and 10 mole% Y2O3) and spherical
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olycrystalline ZO2 particles (3 mole% Y2O3). Per discussion in text, most of
he densification for single crystal particles occurs during heating to 1400 ◦C.

he grain boundary though the smaller grain. Kellett and Lange
howed that for a given dihedral angle, a special configuration
configuration c in Fig. 4a) could be achieved via coarsening
here the energy barrier for grain boundary motion is reduced to

ero. More than decade later, the same conclusions were reached
y Zhang et al.12 via computation modeling and very unique
xperiments.

Of greater interest for the densification of powder compacts
s the case where the smaller particle is sandwiched between
arger particles as shown in Fig. 4b. With the same sequence of
ass diffusion paths, namely, initial neck formation (sintering)
ia grain boundary diffusion (a to b) and then coarsening (grain
rowth, b to c) via surface diffusion, the same condition that
llows the grain boundary to move without an energy barrier is

o
t
b

ig. 4. (a) Sequential mass transport between two touching particles; steps: a to b, si
ransport for two larger particles sandwiching smaller particle; steps: a to b, sintering
amic Society 28 (2008) 1509–1516 1513

chieved with coarsening as shown by c. In addition, it can be
hown11 that the same condition cause the two larger grain to
ouch one another and initiate neck growth once again. Thus,
he second cycle of neck growth (c to d) reinitiates shrinkage. It
an also be shown11 that when the dihedral angle is >120◦, the
oarsening step (b to c in Fig. 4b) does not lead to shrinkage.
hus, by numerous steps of neck growth and coarsening, a pow-
er compact can continue to undergo shrinkage. But because
he driving energy for coarsening is relatively small, the period
equired for the cyclic neck growth and coarsening is expected
o dominate the densification kinetics. To further illustrate this
oint, Lange13 showed that during heating, the densification rate
f a powder compact will reach a maximum value after achiev-
ng a certain relative density, and then rapidly decline, despite
he higher temperatures. It was thus concluded by Lange and
ellett11 that coarsening was an essential phenomenon in the
ensification of a powder compact. This is certainly consistent
ith the observations of Greskovich and Lay reported on pages
82 and 483 of “Introduction to Ceramics”.

It should be pointed out here that the application of an external
ressure (hot-pressing and hipping) would deform the partially
ense network to continually cause particles to touch and sinter.
t could be concluded that the application of pressure would
void the need for coarsening to achieve full densification.

. Coarsening of pores during densification

The Greskovich and Lay micrographs11 not only illustrate
rain growth during densification, but they also illustrate con-
urrent pore growth. It has been shown that particles that formed
ecks during the initial stage of densification can de-sinter if
ither the particles connected by the necks undergo coarsening
nd are constrained from shrinking or are pulled apart due to ten-
f one part or the compact relative to another. The first of these
wo phenomena can be illustrated by examining configuration

in Fig. 4b. If the smaller grain were to redistribute its mass

ntering; b to c, coarsening; c to d, grain boundary motion. (b) Sequential mass
; b to c, coarsening; c to d, sintering between larger touching particles.
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isolated pores. Namely, since the curvature of pores was related
to the number of coordinating grains, it was postulated that grain
growth was required to change the surface curvature from convex
to concave.

Fig. 6. Three pores, each connected to a different number of grain boundaries.
ig. 5. Series of three micrographs of a partially dense alumina body, take at the
ame location after heating to 1600 ◦C for different periods (see inserts). Note
he two white arrows where de-sintering occurs.

o the larger grains and the larger grains were constrained from
oving together, the smaller grain would break-away (de-sinter)

rom one of the larger grains and be adsorbed by the other. This
s shown at two locations in the sequential micrographs (see two
hite arrows) of Fig. 5.

De-sintering is a phenomenon commonly observed for the

ensification of polycrystalline thin films biaxially constrained
y a substrate.14 It occurs when grain growth occurs either in a
olycrystalline fiber15 or a dense polycrystalline thin film16 that

B
b
a
(

amic Society 28 (2008) 1509–1516

s constrained by either a surrounding matrix, or a substrate,
espectively. De-sintering occurs within a powder compact that
s constrained from shrinking caused either by a network of
nclusions17 or simply by a distribution of denser regions. Pore
rowth occurs to reduce the surface to volume ratio of a pow-
er compact, when the compact is either constrained from
hrinking, or when surface diffusion and/or evaporation con-
ensation are the only mass transport paths. For the case of
nterest here, pore growth will occur in regions where densifi-
ation is locally constrained, whereas the partially dense body
ill globally undergo densification as described in the next

ection.

. Disappearance of isolated pores

Prior to this section, portions of the partially dense body
ere consider to contain an interconnected pore phase much

ike that shown in Fig. 5. Isolated pores will be considered here,
condition usually considered to occur when the relative den-

ity is >0.90. Until the report by Kingery and Francois,18 pores
ithin a polycrystalline material were treated as spherical voids.
he relation between the driving energy that drives mass to

he pore was simply given by σ = 2γ/Rp, where γ is the sur-
ace energy/unit area and Rp is the radius of the pore. Kingery
nd Francois pointed out that because grain boundaries inter-
ected the pore, and Young’s relation between the grain boundary
nd pore surface must be obeyed, the real surface curvature of
he pore would be either convex or concave. They argued that
ores with concave surfaces would grow and those with con-
ex surfaces would shrink and disappear. Kellett19 recognized
hat the mass to fill the pore had to come form the external
urface of the polycrystalline body. Kellett therefore compare
he free energy of an isolated pore to that of the external sur-
ace to show that convex pores would shrink to an equilibrium
ize, and not grow as suggested by Kingery and Francois. Kel-
ett showed that this condition was related to the grain size,
ihedral angle and the number of coordinating grains. He also
howed that convex pores would shrink and disappear. Because
his thermodynamic argument was compelling, it was hypothe-
ized that grain growth must be linked to the disappearance of
lack circles are ‘packets’ of mass being delivered to the pore via the grain
oundaries. The pore can be visualized as a ‘roundabout’, and the back circles
s speeding cars that fill the ‘roads’ to become ‘stuck’ within the roundabout
pore).
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ig. 7. (a) Periodic unit cells each containing a pore. Each cell exhibits identi
eriodic; thus the shrinkage of each pore is mechanically constrained by others

Slamovich and Lange20 tested this hypothesis by preparing
pecimens containing large pores produced when identical, dis-
ersed polymer spheres disappeared during the heating of a
owder compact. In one set of specimens, grain growth was
o rapid that all pores had concave surfaces after short periods
t high temperatures. Whereas, for the second set of specimens
rain growth was so sluggish, the pores were always coordi-
ated by many grains and their surfaces were concave. These
xperiments disproved the initial hypothesis. Namely, pores sur-
ounded by a large number of grains disappeared despite their
onvex curvature, whereas pores surrounded by large grains
ere very sluggish to shrink, despite their concave curvature.
o reconcile the experimental findings with the thermodynam-

cs relating surface curvature to pore disappearance, it was first
ostulated that in reality, pores with concave curvatures were
enerally larger than their equilibrium size, and thus, the pore
hould be considered as a simple sphere with a negative curva-
ure. Second it was recognized that since grain boundaries are
he only rapid paths for mass transport, the greater that number
f grain boundaries intercepting the pore, the faster mass can
e delivered to the pore, thus, the greater the rate of pore disap-
earance. Fig. 6 illustrates this idea, with pores (roundabouts)
onnected by 2, 4 and 8 roads (grain boundaries). Cars (units of
ass), always filling the roads, all stream into the roundabout at
rate that is governed by the driving energy, σ = 2γ/r. Pores con-
ected to many roads fill faster than those connected by fewer
oads.

It was further suggested that if the pores are identical and
re periodic as shown in Fig. 7a, and if the pores were to shrink
t the same rate, each ‘unit cell’ containing a single, identical
ore would shrink identically as all others. Since the unit cells
re connected to one another, the shrinkage of one cell would
imic all others, and thus the body, as a whole, would mimic that

f the unit cell. If this were the case, each cell would contribute

ass from its external surface, and thus, the distance needed

o move mass to the pore would be related to half the distance
etween the pores. This idea lead to a simple expression relat-
ng the densification rate, ρ̇, to the number of grain boundaries
rinkage vs. time and thus mimics the shrinkage of the body. (b) Pores are not

ntersecting the pore, n, the driving free energy, σ = 2γ/Rp, and
he half distance between the periodic pores, h,

˙ ∝ 2nγh

Rp
. (3)

s pointed out by Sir Richard Brook in 1969,21 pores not con-
ected to grain boundaries, but embedded within the grain, are
he least likely to disappear.

In reality, pores are never periodically distributed, but are
andomly distributed as shown in Fig. 7b. Thus, because the
ores are not periodically distributed and have different sizes,
hoosing the smallest volume element (a unit cell that contains a
umber of pores) that shrinks in an identical manor as the body
tself is not a trivial task, and part of the unfinished story of
ensification.
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